欢迎访问“嘉兴市光伏行业协会”! 协会热线:0573-82763426

技术交流

当前位置:首页 > 新闻动态 > 技术交流

26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层

来源:钙钛矿学习与交流 发布时间:2025-07-09 被阅读:12

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电子,促进其 p 型掺杂。与对照 P3CT 相比,掺杂后的 P3CT-TBB 薄膜电导率提升约 10 倍。因此,基于 P3CT-TBB 的倒置 PSCs 展现出超过 26% 的最高效率,且无厚度敏感性 —— 当 P3CT-TBB 厚度超过 60 nm 时,PSCs 仍能保持超过 24% 的效率。此外,由于空穴提取能力的提升,器件稳定性也得到改善,在 ISOS-L-2 协议(65°C)下进行 1200 小时最大功率点(MPP)跟踪后,仍能保留约 90% 的初始效率。

一、研究背景与目的

倒置钙钛矿太阳能电池(PSCs)的发展现状效率已达 27%,关键依赖高效空穴传输层(HTL),如自组装单层(SAM)类分子(Me-2PACz 等),但 SAM 厚度需严格控制在~5 nm,>10 nm 时效率从 23% 降至 15%,限制大规模应用。

聚合物 HTL 的挑战虽导电性优于 SAM,但厚度超过 20 nm 时效率仍显著下降,如 P3CT 在 50 nm 时效率仅为初始 60%,开发厚度不敏感 HTL 迫在眉睫。

二、材料设计与制备

P3CT-TBB 的合成通过 1,3,5 - 三 (溴甲基) 苯(TBB)对聚 [3-(4 - 羧基丁基) 噻吩](P3CT)进行 p 型掺杂,TBB 从 P3CT 噻吩链吸电子,促进掺杂。

关键改性效果电导率提升~10 倍(P3CT-TBB 为 1.132 S/m,P3CT 为 0.108 S/m),空穴迁移率提升至 1.27×10?? cm??V???s??,费米能级下移至 - 4.80 eV,与钙钛矿能级(-5.40 eV)更匹配。

三、性能表征

1、结构与电学表征

FTIR 与 XPS证实 P3CT 与 TBB 的相互作用,S 2p 峰位移表明 P3CT 链带正电。

ESR 与 C-AFMP3CT-TBB 出现单一线性信号,电流分布均匀,平均电流 2.15 nA(P3CT 为 0.25 nA)。

2、能级与载流子传输

UPS 与 KPFMP3CT-TBB 价带顶下移至 - 5.12 eV,接触电位降至 - 300 mV,促进空穴提取。

PL 与 TRPLP3CT-TBB / 钙钛矿的荧光寿命缩短至 492.37 ns(P3CT 为 812.38 ns),载流子提取加快。

3、模块性能

12 cm? 迷你模块效率 21.35%,优于 P3CT 模块的 16.21%。

4、阻抗与光谱

P3CT-TBB 器件串联电阻(10.03-29.73 Ω)远低于 P3CT(18.37-79.53 Ω),EQE 曲线在 > 650 nm 区域响应稳定。

四、稳定性

操作稳定性65°C 下 ISOS-L-2 协议 MPP 跟踪 1200 小时,保留~90% 初始效率(P3CT 仅 750 小时保留 80%)。

热稳定性85°C 氮气环境老化 800 小时,保留~90% 效率,湿气 - 热稳定性良好。

五、结论

P3CT-TBB 通过 TBB 掺杂实现厚度不敏感性,在 16-69 nm 范围内维持 > 24% 效率,为倒置 PSCs 及模块的商业化提供了高效稳定的 HTL 解决方案。

关键问题

为什么 P3CT-TBB 能实现厚度不敏感性?

TBB 对 P3CT 进行 p 型掺杂,从噻吩链吸电子,使 P3CT-TBB 电导率提升约 10 倍(达 1.132 S/m),且能级下移(费米能级 - 4.80 eV),与钙钛矿能级更匹配,减少了厚度增加导致的串联电阻上升和空穴提取障碍,因此在 16-69 nm 厚度范围内效率波动小。

器件制备过程

1. ITO 基板清洗

依次用洗涤剂、去离子水、丙酮、异丙醇超声清洗,每步 20 分钟,氮气吹干后紫外臭氧处理 20 分钟。

2. 空穴传输层(HTL)制备

P3CT 溶液:15 mg/mL 甲醇溶液。

P3CT-TBB 溶液:3 mg TBB 溶于 1 mL P3CT 溶液(15 mg/mL),60°C 搅拌 48 小时,过滤后稀释至不同浓度(对应厚度 16-86 nm,浓度 0.5-13 mg/mL)。

旋涂参数在空气中以 4000 rpm 旋涂 30 秒,100°C 空气退火 10 分钟。

厚度控制通过调节溶液浓度(0.5-13 mg/mL)制备 9、16、22、38、54、69、86 nm 厚度的 HTL。

3. 钙钛矿层制备

前驱体组成1.3 M (FA?.??MA?.??)?.??Cs?.??Pb (I?.??Br?.??)?(含 20% MACl),具体包括 FAI 201.8 mg、MABr 7 mg、CsI 16.8 mg、PbBr? 23.8 mg、PbI? 569.4 mg、MACl 21.8 mg,溶于 DMF:DMSO=8:1(v/v)混合溶剂。

旋涂条件氮气手套箱内,先 2000 rpm 旋涂 10 秒,再 4000 rpm 旋涂 20 秒,旋涂 20 秒时滴加 150 μL 氯苯(CB),120°C 空气退火 20 分钟(25°C,湿度 30%)。

钝化处理冷却后用 2 mg/mL PEACl 的 IPA 溶液 4000 rpm 旋涂 30 秒。

4. 电子传输层及电极沉积

PCBM 层10 mg/mL CB 溶液,2000 rpm 旋涂 45 秒。

真空蒸镀转移至真空腔(5×10?? Pa),依次蒸镀 C60(30 nm)、TPBi(6 nm)、Cu(100 nm)。

器件面积有效面积 0.09 cm?(Cu 与 ITO 重叠区域),J-V 测试使用 0.0836 cm? 金属掩膜

协会动态

推荐会员

Copyright © 2022 www.jxgfxh.org.cn. 嘉兴市光伏行业协会 版权所有
嘉兴市信息化和工业化融合促进中心 提供技术支持
备案号:浙ICP备2021024437号-1 浙公网安备 33041102000495号